Хеш-функции - это функции, предназначенные для "сжатия" сообщения или набора данных произвольной длины в некоторую битовую комбинацию фиксированной длины, называемую сверткой. Хеш-функции имеют разнообразные применения при проведении статистических экспериментов, при тестировании логических устройств, при построении алгоритмов быстрого поиска и проверки целостности записей в базах данных. Например, для осуществления быстрого поиска нужного сообщения в большом списке сообщений различной длины удобнее сравнивать друг с другом не сами сообщения, а короткие значения их сверток, играющих одновременно роль контрольных сумм. Основным требованием к таким хеш-функциям является равномерность распределения их значений при случайном выборе значений аргументов.

В криптографии хеш-функции применяются для решения следующих задач:

Построения систем контроля целостности данных при их передаче или хранении,

Аутентификации источника данных.

При решении первой задачи для каждого набора данных вычисляется значение хеш-функции (называемое кодом аутентификации сообщения или имитовставкой), которое передается или хранится вместе с самими данными. При получении данных пользователь вычисляет значение свертки и сравнивает его с имеющимся контрольным значением. Несовпадение говорит о том, что данные были изменены.

Хеш-функция, служащая для выработки имитовставки, должна позволять (в отличие от обычной контрольной суммы) осуществлять обнаружение не только случайных ошибок в наборах данных, возникающих при их хранении и передаче, но и сигнализировать об активных атаках злоумышленника, пытающегося осуществить навязывание ложной информации. Для того чтобы злоумышленник не смог самостоятельно вычислить контрольное значение свертки и тем самым осуществить успешную имитацию или подмену данных, хеш-функция должна зависеть от секретного, не известного злоумышленнику, параметра - ключа пользователя. Этот ключ должен быть известен передающей и проверяющей сторонам. Такие хеш-функции будем называть ключевыми.

Имитовставки, формируемые с помощью ключевых хеш-функций, не должны позволять противнику создавать поддельные (сфабрикованные) сообщения (fabrication) при атаках типа имитация (impersonation) и модифицировать передаваемые сообщения (modification) при атаках типа "подмена " (substitution).

При решении второй задачи - аутентификации источника данных - мы имеем дело с не доверяющими друг другу сторонами. В связи с этим подход, при котором обе стороны обладают одним и тем же секретным ключом, уже неприменим. В такой ситуации применяют схемы цифровой подписи, позволяющие осуществлять аутентификацию источника данных. Как правило, при этом сообщение, прежде чем быть подписано личной подписью, основанной на секретном ключе пользователя, "сжимается" с помощью хеш-функции, выполняющей функцию кода обнаружения ошибок. В данном случае хеш-функция не зависит от секретного ключа и может быть фиксирована и известна всем. Основными требованиями к ней являются гарантии невозможности подмены подписанного документа, а также подбора двух различных сообщений с одинаковым значением хеш-функции (в этом случае говорят, что такая пара сообщений образует коллизию).

Формализуя сказанное, введем следующее определение. Обозначим через Х множество, элементы которого будем называть сообщениями. Обычно сообщения представляют собой последовательности символов некоторого алфавита, как правило, двоичного. Пусть Y - множество двоичных векторов фиксированной длины.

Хеш-функцией называется всякая функция h: Х ® Y,

легко вычислимая и такая, что для любого сообщения М значение h(M) = Н (свертка) имеет фиксированную битовую длину.

Цифровая подпись

В некоторых ситуациях, например в силу изменившихся обстоятельств, отдельные лица могут отказаться от ранее принятых обязательств. В связи с этим необходим некоторый механизм, препятствующий подобным попыткам.

Так как в данной ситуации предполагается, что стороны не доверяют друг другу, то использование общего секретного ключа для решения поставленной проблемы становится невозможным. Отправитель может отказаться от факта передачи сообщения, утверждая, что его создал сам получатель (отказ от авторства). Получатель легко может модифицировать, подменить или создать новое сообщение, а затем утверждать, что оно получено от отправителя (приписывание авторства). Ясно, что в такой ситуации арбитр при решении спора не будет иметь возможность установить истину.

Основным механизмом решения этой проблемы является так называемая цифровая подпись.

Хотя цифровая подпись и имеет существенные отличия, связанные с возможностью отделения от документа и независимой передачей, а также возможностью подписывания одной подписью всех копий документа, она во многом аналогична обычной "ручной" подписи.

Схема цифровой подписи включает два алгоритма, один - для вычисления, а второй - для проверки подписи. Вычисление подписи может быть выполнено только автором подписи. Алгоритм проверки должен быть общедоступным, чтобы проверить правильность подписи мог каждый.

Одновременно с проблемой цифровой подписи возникла проблема построения бесключевых криптографических хеш-функций. Дело в том, что при вычислении цифровой подписи оказывается более удобным осуществить сначала хеширование, то есть свертку текста в некоторую комбинацию фиксированной длины, а затем уже подписывать полученную комбинацию с помощью секретного ключа. При этом функция хеширования, хотя и не зависит от ключа и является открытой, должна быть "криптографической". Имеется в виду свойство односторонности этой функции: по значению комбинации-свертки никто не должен иметь возможность подобрать соответствующее сообщение.


Похожая информация.


Аннотация: В этой лекции сформулировано понятие хеш-функции, а также приведен краткий обзор алгоритмов формирования хеш-функций. Кроме того, рассмотрена возможность использования блочных алгоритмов шифрования для формирования хеш-функции.

Цель лекции: познакомиться с понятием "хеш-функция", а также с принципами работы таких функций.

Понятие хеш-функции

Хеш-функцией (hash function) называется математическая или иная функция, которая для строки произвольной длины вычисляет некоторое целое значение или некоторую другую строку фиксированной длины. Математически это можно записать так:

где М – исходное сообщение, называемое иногда прообразом , а h – результат, называемый значением хеш-функции (а также хеш-кодом или дайджестом сообщения (от англ. message digest )).

Смысл хеш-функции состоит в определении характерного признака прообраза – значения хеш-функции. Это значение обычно имеет определенный фиксированный размер, например, 64 или 128 бит. Хеш-код может быть в дальнейшем проанализирован для решения какой-либо задачи. Так, например, хеширование может применяться для сравнения данных: если у двух массивов данных хеш-коды разные, массивы гарантированно различаются; если одинаковые - массивы, скорее всего, одинаковы. В общем случае однозначного соответствия между исходными данными и хеш-кодом нет из-за того, что количество значений хеш-функций всегда меньше, чем вариантов входных данных. Следовательно, существует множество входных сообщений, дающих одинаковые хеш-коды (такие ситуации называются коллизиями ). Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Хеш-функции широко применяются в современной криптографии.

Простейшая хеш-функция может быть составлена с использованием операции "сумма по модулю 2" следующим образом: получаем входную строку, складываем все байты по модулю 2 и байт-результат возвращаем в качестве значения хеш-фукнции. Длина значения хеш-функции составит в этом случае 8 бит независимо от размера входного сообщения.

Например, пусть исходное сообщение, переведенное в цифровой вид, было следующим (в шестнадцатеричном формате):

Переведем сообщение в двоичный вид, запишем байты друг под другом и сложим биты в каждом столбике по модулю 2:

0011 1110 0101 0100 1010 0000 0001 1111 1101 0100 ---------- 0110 0101

Результат (0110 0101 (2) или 65 (16) ) и будет значением хеш-функции.

Однако такую хеш-функцию нельзя использовать для криптографических целей, например для формирования электронной подписи, так как достаточно легко изменить содержание подписанного сообщения, не меняя значения контрольной суммы.

Поэтому рассмотренная хеш-функция не годится для криптографических применений. В криптографии хеш-функция считается хорошей, если трудно создать два прообраза с одинаковым значением хеш-функции, а также, если у выхода функции нет явной зависимости от входа.

Сформулируем основные требования, предъявляемые к криптографическим хеш-функциям:

  • хеш-функция должна быть применима к сообщению любого размера;
  • вычисление значения функции должно выполняться достаточно быстро;
  • при известном значении хеш-функции должно быть трудно (практически невозможно) найти подходящий прообраз М ;
  • при известном сообщении М должно быть трудно найти другое сообщение М’ с таким же значением хеш-функции, как у исходного сообщения;
  • должно быть трудно найти какую-либо пару случайных различных сообщений с одинаковым значением хеш-функции.

Создать хеш-функцию, которая удовлетворяет всем перечисленным требованиям – задача непростая. Необходимо также помнить, что на вход функции поступают данные произвольного размера, а хеш-результат не должен получаться одинаковым для данных разного размера.

В настоящее время на практике в качестве хеш-функций применяются функции, обрабатывающие входное сообщение блок за блоком и вычисляющие хеш-значение h i для каждого блока M i входного сообщения по зависимостям вида

h i =H(M i ,h i-1),

где h i-1 – результат, полученный при вычислении хеш-функции для предыдущего блока входных данных.

В результате выход хеш-функции h n является функцией от всех n блоков входного сообщения.

Использование блочных алгоритмов шифрования для формирования хеш-функции

В качестве хеш-функции можно использовать блочный . Если используемый блочный алгоритм криптографически стоек, то и хеш-функция на его основе будет надежной.

Простейшим способом использования блочного алгоритма для получения хеш-кода является шифрование сообщения в режиме CBC . В этом случае сообщение представляется в виде последовательности блоков, длина которых равна длине блока алгоритма шифрования. При необходимости последний блок дополняется справа нулями, чтобы получился блок нужной длины. Хеш-значением будет последний зашифрованный блок текста. При условии использования надежного блочного алгоритма шифрования полученное хеш-значение будет обладать следующими свойствами:

  • практически невозможно без знания ключа шифрования вычисление хеш-значения для заданного открытого массива информации;
  • практически невозможен без знания ключа шифрования подбор открытых данных под заданное значение хеш-функции.

Сформированное таким образом хеш-значение обычно называют имитовставкой или аутентификатором и используется для проверки целостности сообщения. Таким образом, имитовставка – это контрольная комбинация, зависящая от открытых данных и секретной ключевой информации. Целью использования имитовставки является обнаружение всех случайных или преднамеренных изменений в массиве информации. Значение, полученное хеш-функцией при обработке входного сообщения, присоединяется к сообщению в тот момент, когда известно, что сообщение корректно. Получатель проверяет целостность сообщения путем вычисления имитовставки полученного сообщения и сравнения его с полученным хеш-кодом, который должен быть передан безопасным способом. Одним из таких безопасных способов может быть шифрование имитовставки закрытым ключом отправителя, т.е. создание подписи. Возможно также шифрование полученного хеш-кода алгоритмом симметричного шифрования, если отправитель и получатель имеют общий ключ симметричного шифрования.

Указанный процесс получения и использования имитовставки описан в отечественном стандарте ГОСТ 28147-89. Стандарт предлагает использовать младшие 32 бита блока, полученного на выходе операции шифрования всего сообщения в режиме сцепления блоков шифра для контроля целостности передаваемого сообщения. Таким же образом для формирования имитовставки можно использовать любой блочный алгоритм симметричного шифрования .

Другим возможным способом применения блочного шифра для выработки хеш-кода является следующий. Исходное сообщение обрабатывается последовательно блоками. Последний блок при необходимости дополняется нулями, иногда в последний блок приписывают длину сообщения в виде двоичного числа. На каждом этапе шифруем хеш-значение, полученное на предыдущем этапе, взяв в качестве ключа текущий блок сообщения. Последнее полученное зашифрованное значение будет окончательным хеш-результатом.

На самом деле возможны еще несколько схем использования блочного шифра для формирования хеш-функции. Пусть М i – блок исходного сообщения, h i – значение хеш-функции на i-том этапе, f – блочный алгоритм шифрования, используемый в режиме простой замены, – операция сложения по модулю 2. Тогда возможны, например, следующие схемы формирования хеш-функции:

Во всех этих схемах длина формируемого хеш-значения равна длине блока при шифровании. Все эти, а также некоторые другие схемы использования блочного алгоритма шифрования для вычисления хеш-значений могут применяться на практике.

Основным недостатком хеш-функций, спроектированных на основе блочных алгоритмов, является относительно низкая скорость работы. Необходимую криптостойкость можно обеспечить и за меньшее количество операций над входными данными. Существуют более быстрые алгоритмы хеширования, спроектированных самостоятельно, с нуля, исходя из требований криптостойкости (наиболее распространенные из них – MD5, SHA-1, SHA-2 и ГОСТ Р 34.11-94).

Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратно алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости - легкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий.

Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP .

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклический избыточных кодов » удовлетворяет этим требованиям. К ним относится, например, CRC32 , применяемый в аппаратуре ZIP.

Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие , применяемые в криптографии . Криптостойкая хеш-функция прежде всего должна обладать стойкостью к коллизиям двух типов:

Применение хеширования

Хеш-функции также используются в некоторых структурах данных - хеш-таблицаx и декартовых деревьях . Требования к хеш-функции в этом случае другие:

  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных

В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:

Проверка на наличие ошибок

Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом.

Проверка парольной фразы

В большинстве случаев парольные фразы не хранятся на целевых объектах, хранятся лишь их хеш-значения. Хранить парольные фразы нецелесообразно, так как в случае несанкционированного доступа к файлу с фразами злоумышленник узнает все парольные фразы и сразу сможет ими воспользоваться, а при хранении хеш-значений он узнает лишь хеш-значения, которые не обратимы в исходные данные, в данном случае в парольную фразу. В ходе процедуры аутентификации вычисляется хеш-значение введённой парольной фразы, и сравнивается с сохранённым.

Примером в данном случае могут служить ОС GNU/Linux и Microsoft Windows XP . В них хранятся лишь хеш-значения парольных фраз из учётных записей пользователей.

Ускорение поиска данных

Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.

Список алгоритмов

  • SHA-2 (SHA-224, SHA-256, SHA-384, SHA-512)
  • RIPEMD-160
  • RIPEMD-320
  • Snefru
  • Tiger (Whirlpool
  • IP Internet Checksum (RFC 1071)

Ссылки

Wikimedia Foundation . 2010 .

Приложений.

Энциклопедичный YouTube

  • 1 / 5

    Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    Данные требования не являются независимыми:

    • Обратимая функция нестойка к коллизиям первого и второго рода.
    • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

    Принципы построения

    Итеративная последовательная схема

    При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен (k − n ) . Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.

    Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.

    Сжимающая функция на основе симметричного блочного алгоритма

    В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.

    Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис. 2.

    Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.

    Применения

    Электронная подпись

    Пусть некий клиент, с именем name , производит аутентификацию по парольной фразе, pass , на некоем сервере. На сервере хранится значение хеш-функции H (pass , R 2) , где R 2 - псевдослучайное, заранее выбранное число. Клиент посылает запрос (name , R 1 ), где R 1 - псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R 2 . Клиент вычисляет значение хеш-функции H (R 1 , H (pass , R 2)) и посылает его на сервер. Сервер также вычисляет значение H (R 1 , H (pass , R 2)) и сверяет его с полученным. Если значения совпадают - аутентификация верна.

    Криптографическая хеш-функция - всякая хеш-функция , являющаяся криптостойкой , то есть удовлетворяющая ряду требований, специфичных для криптографических приложений.

    Требования

    Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трём основным требованиям, на которых основано большинство применений хеш-функций в криптографии:

    • Необратимость или стойкость к восстановлению прообраза : для заданного значения хеш-функции m не должен быть вычислен блок данных X , для которого {H(X)=m}.
    • Стойкость к коллизиям первого рода или восстановлению вторых прообразов : для заданного сообщения M должно быть вычислительно невозможно подобрать другое сообщение N , для которого H(N)=H(M).
    • Стойкость к коллизиям второго рода : должно быть вычислительно невозможно подобрать пару сообщений (M, M"), имеющих одинаковый хеш.

    Данные требования не являются независимыми:

    • Обратимая функция нестойка к коллизиям первого и второго рода.
    • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

    Принципы построения

    Итеративная последовательная схема

    В общем случае в основе построения хеш-функции лежит итеративная последовательная схема. Ядром алгоритма является сжимающая функция - преобразование k входных в n выходных бит, где n - разрядность хеш-функции, а k - произвольное число, большее n . При этом сжимающая функция должна удовлетворять всем условиям криптостойкости.

    Входной поток разбивается на блоки по (k − n ) бит. Алгоритм использует вре́менную переменную размером в n бит, в качестве начального значения которой берется некое общеизвестное число. Каждый следующий блок данных объединяется с выходным значением сжимающей функции на предыдущей итерации. Значением хеш-функции являются выходные n бит последней итерации. Каждый бит выходного значения хеш-функции зависит от всего входного потока данных и начального значения. Таким образом достигается лавинный эффект .

    При проектировании хеш-функций на основе итеративной схемы возникает проблема с размером входного потока данных. Размер входного потока данных должен быть кратен (k − n ) . Как правило, перед началом алгоритма данные расширяются неким, заранее известным, способом.

    Помимо однопроходных алгоритмов, существуют многопроходные алгоритмы, в которых ещё больше усиливается лавинный эффект. В этом случае данные сначала повторяются, а потом расширяются до необходимых размеров.

    Сжимающая функция на основе симметричного блочного алгоритма

    В качестве сжимающей функции можно использовать симметричный блочный алгоритм шифрования. Для обеспечения большей безопасности можно использовать в качестве ключа блок данных, предназначенный к хешированию на данной итерации, а результат предыдущей сжимающей функции - в качестве входа. Тогда результатом последней итерации будет выход алгоритма. В таком случае безопасность хеш-функции базируется на безопасности используемого алгоритма.

    Обычно при построении хеш-функции используют более сложную систему. Обобщённая схема симметричного блочного алгоритма шифрования изображена на рис. 2.

    Таким образом, мы получаем 64 варианта построения сжимающей функции. Большинство из них являются либо тривиальными, либо небезопасными. Ниже изображены четыре наиболее безопасные схемы при всех видах атак.

    Основным недостатком хеш-функций, спроектированных на основе блочных алгоритмов, является низкая скорость работы. Необходимую криптостойкость можно обеспечить и за меньшее количество операций над входными данными. Существуют более быстрые алгоритмы хеширования, спроектированных самостоятельно, с нуля, исходя из требований криптостойкости (наиболее распространенные из них - MD5 , SHA-1 , SHA-2 и ГОСТ Р 34.11-94).

    Применения

    Электронная подпись

    Пусть некий клиент, с именем name , производит аутентификацию по парольной фразе, pass , на некоем сервере. На сервере хранится значение хеш-функции H (pass , R 2) , где R 2 - псевдослучайное, заранее выбранное число. Клиент посылает запрос (name , R 1 ), где R 1 - псевдослучайное, каждый раз новое число. В ответ сервер посылает значение R 2 . Клиент вычисляет значение хеш-функции H (R 1 , H (pass , R 2)) и посылает его на сервер. Сервер также вычисляет значение H (R 1 , H (pass , R 2)) и сверяет его с полученным. Если значения совпадают - аутентификация верна.

    В такой ситуации пароль не хранится открыто на сервере и, даже перехватив все сообщения между клиентом и сервером, криптоаналитик не может восстановить пароль, а передаваемое хеш-значение каждый раз разное.

    См. также

    Напишите отзыв о статье "Криптографическая хеш-функция"

    Отрывок, характеризующий Криптографическая хеш-функция

    Наполеон с своей уверенностью в том, что не то хорошо, что хорошо, а то хорошо, что ему пришло в голову, написал Кутузову слова, первые пришедшие ему в голову и не имеющие никакого смысла. Он писал:

    «Monsieur le prince Koutouzov, – писал он, – j"envoie pres de vous un de mes aides de camps generaux pour vous entretenir de plusieurs objets interessants. Je desire que Votre Altesse ajoute foi a ce qu"il lui dira, surtout lorsqu"il exprimera les sentiments d"estime et de particuliere consideration que j"ai depuis longtemps pour sa personne… Cette lettre n"etant a autre fin, je prie Dieu, Monsieur le prince Koutouzov, qu"il vous ait en sa sainte et digne garde,
    Moscou, le 3 Octobre, 1812. Signe:
    Napoleon».
    [Князь Кутузов, посылаю к вам одного из моих генерал адъютантов для переговоров с вами о многих важных предметах. Прошу Вашу Светлость верить всему, что он вам скажет, особенно когда, станет выражать вам чувствования уважения и особенного почтения, питаемые мною к вам с давнего времени. Засим молю бога о сохранении вас под своим священным кровом.
    Москва, 3 октября, 1812.
    Наполеон. ]

    «Je serais maudit par la posterite si l"on me regardait comme le premier moteur d"un accommodement quelconque. Tel est l"esprit actuel de ma nation», [Я бы был проклят, если бы на меня смотрели как на первого зачинщика какой бы то ни было сделки; такова воля нашего народа. ] – отвечал Кутузов и продолжал употреблять все свои силы на то, чтобы удерживать войска от наступления.
    В месяц грабежа французского войска в Москве и спокойной стоянки русского войска под Тарутиным совершилось изменение в отношении силы обоих войск (духа и численности), вследствие которого преимущество силы оказалось на стороне русских. Несмотря на то, что положение французского войска и его численность были неизвестны русским, как скоро изменилось отношение, необходимость наступления тотчас же выразилась в бесчисленном количестве признаков. Признаками этими были: и присылка Лористона, и изобилие провианта в Тарутине, и сведения, приходившие со всех сторон о бездействии и беспорядке французов, и комплектование наших полков рекрутами, и хорошая погода, и продолжительный отдых русских солдат, и обыкновенно возникающее в войсках вследствие отдыха нетерпение исполнять то дело, для которого все собраны, и любопытство о том, что делалось во французской армии, так давно потерянной из виду, и смелость, с которою теперь шныряли русские аванпосты около стоявших в Тарутине французов, и известия о легких победах над французами мужиков и партизанов, и зависть, возбуждаемая этим, и чувство мести, лежавшее в душе каждого человека до тех пор, пока французы были в Москве, и (главное) неясное, но возникшее в душе каждого солдата сознание того, что отношение силы изменилось теперь и преимущество находится на нашей стороне. Существенное отношение сил изменилось, и наступление стало необходимым. И тотчас же, так же верно, как начинают бить и играть в часах куранты, когда стрелка совершила полный круг, в высших сферах, соответственно существенному изменению сил, отразилось усиленное движение, шипение и игра курантов.

    Русская армия управлялась Кутузовым с его штабом и государем из Петербурга. В Петербурге, еще до получения известия об оставлении Москвы, был составлен подробный план всей войны и прислан Кутузову для руководства. Несмотря на то, что план этот был составлен в предположении того, что Москва еще в наших руках, план этот был одобрен штабом и принят к исполнению. Кутузов писал только, что дальние диверсии всегда трудно исполнимы. И для разрешения встречавшихся трудностей присылались новые наставления и лица, долженствовавшие следить за его действиями и доносить о них.
    Кроме того, теперь в русской армии преобразовался весь штаб. Замещались места убитого Багратиона и обиженного, удалившегося Барклая. Весьма серьезно обдумывали, что будет лучше: А. поместить на место Б., а Б. на место Д., или, напротив, Д. на место А. и т. д., как будто что нибудь, кроме удовольствия А. и Б., могло зависеть от этого.
    В штабе армии, по случаю враждебности Кутузова с своим начальником штаба, Бенигсеном, и присутствия доверенных лиц государя и этих перемещений, шла более, чем обыкновенно, сложная игра партий: А. подкапывался под Б., Д. под С. и т. д., во всех возможных перемещениях и сочетаниях. При всех этих подкапываниях предметом интриг большей частью было то военное дело, которым думали руководить все эти люди; но это военное дело шло независимо от них, именно так, как оно должно было идти, то есть никогда не совпадая с тем, что придумывали люди, а вытекая из сущности отношения масс. Все эти придумыванья, скрещиваясь, перепутываясь, представляли в высших сферах только верное отражение того, что должно было совершиться.
    «Князь Михаил Иларионович! – писал государь от 2 го октября в письме, полученном после Тарутинского сражения. – С 2 го сентября Москва в руках неприятельских. Последние ваши рапорты от 20 го; и в течение всего сего времени не только что ничего не предпринято для действия противу неприятеля и освобождения первопрестольной столицы, но даже, по последним рапортам вашим, вы еще отступили назад. Серпухов уже занят отрядом неприятельским, и Тула, с знаменитым и столь для армии необходимым своим заводом, в опасности. По рапортам от генерала Винцингероде вижу я, что неприятельский 10000 й корпус подвигается по Петербургской дороге. Другой, в нескольких тысячах, также подается к Дмитрову. Третий подвинулся вперед по Владимирской дороге. Четвертый, довольно значительный, стоит между Рузою и Можайском. Наполеон же сам по 25 е число находился в Москве. По всем сим сведениям, когда неприятель сильными отрядами раздробил свои силы, когда Наполеон еще в Москве сам, с своею гвардией, возможно ли, чтобы силы неприятельские, находящиеся перед вами, были значительны и не позволяли вам действовать наступательно? С вероятностию, напротив того, должно полагать, что он вас преследует отрядами или, по крайней мере, корпусом, гораздо слабее армии, вам вверенной. Казалось, что, пользуясь сими обстоятельствами, могли бы вы с выгодою атаковать неприятеля слабее вас и истребить оного или, по меньшей мере, заставя его отступить, сохранить в наших руках знатную часть губерний, ныне неприятелем занимаемых, и тем самым отвратить опасность от Тулы и прочих внутренних наших городов. На вашей ответственности останется, если неприятель в состоянии будет отрядить значительный корпус на Петербург для угрожания сей столице, в которой не могло остаться много войска, ибо с вверенною вам армиею, действуя с решительностию и деятельностию, вы имеете все средства отвратить сие новое несчастие. Вспомните, что вы еще обязаны ответом оскорбленному отечеству в потере Москвы. Вы имели опыты моей готовности вас награждать. Сия готовность не ослабнет во мне, но я и Россия вправе ожидать с вашей стороны всего усердия, твердости и успехов, которые ум ваш, воинские таланты ваши и храбрость войск, вами предводительствуемых, нам предвещают».
    Но в то время как письмо это, доказывающее то, что существенное отношение сил уже отражалось и в Петербурге, было в дороге, Кутузов не мог уже удержать командуемую им армию от наступления, и сражение уже было дано.
    2 го октября казак Шаповалов, находясь в разъезде, убил из ружья одного и подстрелил другого зайца. Гоняясь за подстреленным зайцем, Шаповалов забрел далеко в лес и наткнулся на левый фланг армии Мюрата, стоящий без всяких предосторожностей. Казак, смеясь, рассказал товарищам, как он чуть не попался французам. Хорунжий, услыхав этот рассказ, сообщил его командиру.

Эта статья также доступна на следующих языках: Тайский

  • Next

    Огромное Вам СПАСИБО за очень полезную информацию в статье. Очень понятно все изложено. Чувствуется, что проделана большая работа по анализу работы магазина eBay

    • Спасибо вам и другим постоянным читателям моего блога. Без вас у меня не было бы достаточной мотивации, чтобы посвящать много времени ведению этого сайта. У меня мозги так устроены: люблю копнуть вглубь, систематизировать разрозненные данные, пробовать то, что раньше до меня никто не делал, либо не смотрел под таким углом зрения. Жаль, что только нашим соотечественникам из-за кризиса в России отнюдь не до шоппинга на eBay. Покупают на Алиэкспрессе из Китая, так как там в разы дешевле товары (часто в ущерб качеству). Но онлайн-аукционы eBay, Amazon, ETSY легко дадут китайцам фору по ассортименту брендовых вещей, винтажных вещей, ручной работы и разных этнических товаров.

      • Next

        В ваших статьях ценно именно ваше личное отношение и анализ темы. Вы этот блог не бросайте, я сюда часто заглядываю. Нас таких много должно быть. Мне на эл. почту пришло недавно предложение о том, что научат торговать на Амазоне и eBay. И я вспомнила про ваши подробные статьи об этих торг. площ. Перечитала все заново и сделала вывод, что курсы- это лохотрон. Сама на eBay еще ничего не покупала. Я не из России , а из Казахстана (г. Алматы). Но нам тоже лишних трат пока не надо. Желаю вам удачи и берегите себя в азиатских краях.

  • Еще приятно, что попытки eBay по руссификации интерфейса для пользователей из России и стран СНГ, начали приносить плоды. Ведь подавляющая часть граждан стран бывшего СССР не сильна познаниями иностранных языков. Английский язык знают не более 5% населения. Среди молодежи — побольше. Поэтому хотя бы интерфейс на русском языке — это большая помощь для онлайн-шоппинга на этой торговой площадке. Ебей не пошел по пути китайского собрата Алиэкспресс, где совершается машинный (очень корявый и непонятный, местами вызывающий смех) перевод описания товаров. Надеюсь, что на более продвинутом этапе развития искусственного интеллекта станет реальностью качественный машинный перевод с любого языка на любой за считанные доли секунды. Пока имеем вот что (профиль одного из продавцов на ебей с русским интерфейсом, но англоязычным описанием):
    https://uploads.disquscdn.com/images/7a52c9a89108b922159a4fad35de0ab0bee0c8804b9731f56d8a1dc659655d60.png